
Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

1 of 16 9/6/2006 7:06 PM

 MSDN Home > MSDN Library > Office Solutions Development > Access 2000 > Technical Articles

Database Replication in Microsoft Jet 4.0

[originally from http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnacc2k/html/dbrepjet.asp]

Debra Dove
Microsoft Corporation

January 1999

For the latest information, see www.microsoft.com/Officedev/.

Database Replication with the Microsoft Jet Database Engine: A Technical
Overview

The Microsoft® Jet database engine, version 4.0, is a 32-bit engine that provides database processing and replication
functionality to a variety of applications. This document is intended for experienced Microsoft Jet users who want to
understand database replication as it is implemented in Microsoft Jet and use it more effectively in their applications.

This document focuses on new functionality that is introduced with Microsoft Jet 4.0 and the suggested tools specifically
enhanced for this release of Microsoft Jet replication. New functionality includes the unified treatment of conflicts and
errors, column-level tracking of changes, improved priority-conflict-resolution algorithm, added replica types and
visibilities, and extended replication functionality exposed through the Microsoft Jet and Replication Objects (JRO) 2.1
library. Before diving into the details of these new features, the next three major sections provide an overview of
replication, its uses, and the tools for performing it.

What Is Database Replication?

Database replication is a technique you can use to support multiple users, connected and/or disconnected, of an
application. Replication is the process of creating multiple copies of an application and its data to be used at locations that
are not always connected to each other. Collectively, the copies are called a replica set. One member of the replica set
must be designated the Design Master (where changes to the database design are made); any other copy is a replica.

A replica set can contain only one Design Master, but it can contain as many replicas as needed. The Design Master is the
only copy where changes to the database design are allowed. You can designate any global replica as the Design Master,
but you must be sure that only one replica is marked as the Design Master at any time. When a database is made
replicable, properties are set that identify the database as the Design Master.

Each replica contains a common set of replicated objects and any single replica can also contain local tables and/or queries
that exist only in that replica. When you are using Microsoft® Access 2000, all Microsoft Access objects (forms, reports,
data access pages, macros, and modules) are either replicable or local, which must be specified prior to making the
database replicable. Replicas are synchronized to merge design (schema) and data changes between them. Microsoft Jet
replication ignores local tables and/or queries and local Microsoft Access objects during synchronization; only changes to
replicable objects are synchronized.

All replicas (including the Design Master) include a number of additional fields and tables that Microsoft Jet uses to manage
the replicated application. For example, one field in each record in a replicated table has a globally unique identifier (GUID)
that distinguishes the record from every other record in the replica set. The s_Lineage field records the lineage (replica
ID/version pair) of each record and if changes are tracked at the column (field) level, the additional field s_ColLineage
records the column lineage (replica ID/version pair) of each field. When a record is updated, the version number for that
replica's record in the lineage and column lineage is incremented.

Any copy—whether the Design Master or a replica—can update the data. This is called a multimaster data update design; it
permits a fully distributed system where data updates are not centralized. A column (cell) is the most basic unit of
information recognized in replication when the ColumnLevelTracking property is set on the table. In this case,
nonconflicting fields are merged when changes are transmitted during synchronization. When the RowLevelTracking

property is set on the table, if any field in a row (record) is modified, the whole record is marked as changed. Therefore,
the whole record is updated when changes are transmitted during synchronization and individual fields are not merged.
With row-level tracking, OLE Object and Memo fields are exceptions; these items—due to their potential large size—are not
transmitted unless they have been changed.

Synchronization, an important part of the replication process, reconciles all data and design changes in each replica.
Updating an entire replica set consists of a series of synchronizations between pairs of replicas. The file-tracking system in
Microsoft Jet tracks and records all changes at all replicas, in preparation for updating data during synchronization. Only

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

2 of 16 9/6/2006 7:06 PM

records marked as changed are updated when you synchronize replicas. If two replicas simultaneously update the same
record at different replicas, Microsoft Jet reconciles the updates. This process might introduce a conflict, depending on
whether the table involved in the synchronization is set to track changes at the column or row level. Synchronizations can
be performed on a regular schedule or as often as necessary to ensure all users have current data. This means that all
information will reach all replicas, but there is no guarantee changes will reach all replicas within any specified amount of
time. When using Microsoft Jet, application designers must allow for this in their designs.

Microsoft Jet uses incremental replication. Therefore, during a single synchronization between two replicas, the only
updates made are those resulting from changes made since the last synchronization. This provides significant benefits over
methods of data distribution that transmit the whole database whenever new data or objects require distribution. Each
record in a replicable database has a generation counter; Microsoft Jet uses this field to control incremental exchanges.

Not all applications that support Microsoft Jet use its features in the same way. For example, although Microsoft Excel
cannot replicate a database, it can update a database replicated by another product. Microsoft Jet monitors the changes
made by Microsoft Excel, Microsoft Visual Basic®, or Microsoft Access to a replica and updates these changes when you
synchronize the replicas. These products support Microsoft Jet either directly or through Jet and Replication Objects (JRO),
which is a component of ActiveX® Data Objects (ADO), or Data Access Objects (DAO). Replication is a feature of the Jet
database engine, not of the specific applications that include the Jet database engine.

Microsoft Windows® 95 or 98, Microsoft Windows NT® Server, Windows 95 peer-to-peer, and Novell NetWare networks
are platforms that support Microsoft Jet. Banyan VINES and LANTastic do not support Microsoft Jet replication. Microsoft
Jet replication presumes that files are named in accordance with Microsoft and Novell network file-naming conventions,
which are different from the file-naming conventions used by Banyan and LANTastic.

When Should I Use Replication?

Replication is well-suited to distributed systems that focus primarily on adding new records rather than on updating
existing records. Sales representatives who visit customer offices, parcel delivery drivers, and inspectors who visit a variety
of construction sites are all examples of users who might benefit from replication. There are many tools and techniques for
implementing replication. Some factors to consider when choosing a replication technique are:

How quickly you need data synchronized across all sites.
Budget for hardware, software, and communication services.
Overall system-reliability requirements.

The best candidates for replication are applications that can tolerate some latency in data updates in exchange for a robust
configuration that can allow updates from any replica and that supports users who are only occasionally connected. This
flexibility means the system can work more effectively, potentially improving business performance. Using flexible,
low-cost, off-peak asynchronous communication links and asynchronous data duplication provides "real-time-enough"
updates without the expense and vulnerability of full-time connections between all nodes. When the application's users are
connected, it might be through a direct connection on a local area network (LAN) or wide area network (WAN), or through
the Internet or an intranet. Data can be exchanged on a LAN, a WAN, or the Internet.

Microsoft Jet replication is a good solution if you want to:

Share data among users at multiple remote locations.
Automate the distribution of new features and updates to multiple users.
Use different machines for system queries and transaction processing (this can improve transaction-processing
performance).
Automatically back up data without disabling the system (each replica serves as a backup, so a separate backup procedure
is not needed).

If your multiuser application requires very frequent data updates, if it will update a large number of records at one or more
sites, or if it is critical for data changes to be very quickly obvious to other users, Microsoft Jet replication may not be the
best solution for you to use. Applications in these categories are better served by two-phase commit solutions. In a
two-phase commit, replicas are connected all the time and an update at any one site will be accepted only if agreement is
immediately given from all other sites. It's called a two-phase commit because the initial phase is notification of a
proposed update sent to all replicas, and the second phase is the actual update only when all sites have agreed (that is,
committed) to the update.

Tools That Implement Replication

You can use several tools to implement Microsoft Jet replication. These tools allow you to convert a database to replicable
format, identify a replicable database as the Design Master or a replica, initiate synchronization of the replica set, and a
variety of other management tasks. You can use the following tools to implement Microsoft Jet replication:

Microsoft Access 2000 running under Windows 95 or 98, Windows NT Server, or Windows NT Workstation.
Microsoft Replication Manager, available with Microsoft Office Developer 2000.
Briefcase replication.

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

3 of 16 9/6/2006 7:06 PM

JRO programming, which is available on Windows 95 or 98 or Windows NT Server or Workstation version 4.0 or later.
DAO programming, available on Windows 95 or 98 or Windows NT Server or Workstation version 3.51 or later.

The first three of these tools provide an easy-to-use visual interface, while the last two enable programmers to build
replication directly into their applications.

Microsoft Access Replication Commands

The Replication submenu on the Tools menu in Microsoft Access provides several commands to help you create a replica,
synchronize a replica with another member of the replica set, resolve synchronization conflicts, and recover a replica set's
Design Master. For more information about these commands, refer to the Help system provided with Microsoft Access.

Note Replication is not installed by default when Microsoft Access 2000 is installed by using the Typical option.
However, the replication components will be installed upon first use from the Access user interface. To install the
replication components when you are installing Access, choose the Customize option and select the Database
Replication feature.

Microsoft Replication Manager

Microsoft Replication Manager is included with Microsoft Office Developer 2000. It is another tool that lets you use
replication to administer a distributed application. It offers more functionality and more features than the Microsoft
Briefcase. Key features include:

Graphical user interface and tools for system development and maintenance.
Visual representation of replica set topologies, which greatly assist system management.
Activity reports to assist with troubleshooting and synchronization reports to help monitor the activity among replicas.
Property dialog boxes that provide valuable information about components.
Administration commands controlling the conversion, creation, location, and management of replicas.
Scheduled exchanges between replicas administered through a graphical user interface, plus immediate synchronization
with remote replicas through point-and-click commands.
Direct and indirect exchanges provide additional support for "rarely connected" users. Laptop users may specify a
networked file location where exchange information may be deposited for later processing. Synchronization is optimized
over a LAN or WAN for indirect exchanges, and optimized for direct exchanges when a direct connection can be established
between local replicas.
Synchronization over the Internet.
Exchanges can be configured to only send data, only receive data, or send and receive.

Synchronizer

The Synchronizer is an agent you can use with the Replication Manager to provide scheduled background exchanges
between replicas. These exchanges can be made while two replicas are directly connected, or through a file-system
transport (indirect and Internet) that does not require a direct connection for the exchange. In either type of transfer, the
Synchronizer collects the changes at one replica and transmits them to other replicas. If the file-transfer system is used,
one replica must deposit changes in a temporary file. The Synchronizer, initiated from the target replica, collects the
updates at a later time and applies them to the target replica. This is a great benefit for rarely connected users; they can
post changes whenever convenient rather than depending on an available connection. The Synchronizer is required for
both indirect and Internet synchronizations.

Note When running the Synchronizer to schedule exchanges between replicas, you may find it advantageous to
disable the Windows 95 or 98 System Agents. Disk compression and defragmenting can make heavy demands
upon your PC that prevent scheduled replication exchanges from completing in a timely fashion.

Indirect synchronization

To use indirect synchronization, you must install and configure the Replication Manager on both computers participating in
the exchange. In contrast to direct synchronization, which opens both members of the replica set involved in the exchange,
indirect synchronization relies on a series of message exchanges between replicas. The Synchronizer managing each
replica collects changes into one or many "message files" (*.msg), which are then sent to a shared folder, called a
dropbox, which is being used by the partner Synchronizer. The partner Synchronizer then processes these message files.
Additional message files continue to be sent back and forth between Synchronizers until the synchronization is completed.

Internet synchronization

Internet synchronization is a way to exchange the data in a replicated database over an Internet or intranet connection,
requiring only the replica on the Internet server to have Replication Manager installed and configured. Internet
synchronizations also use a dropbox, as in indirect synchronization, but the dropbox on the Internet server is used for all
replicas in the replica set. Microsoft Jet 4.0 introduces several new features to Internet synchronization, including:

Support of the HTTP 1.1 protocol:

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

4 of 16 9/6/2006 7:06 PM

Eliminates the reliance on FTP for synchronization.
Enables support through a proxy server.
Performance enhancements to reduce transfer times.
The addition of several registry keys to control Synchronizer timeouts.

Briefcase Replication

The Briefcase is an accessory available in Windows 95, Windows 98 (the feature is not installed by default on a new
installation), and Windows NT Workstation or Server version 4.0. When Microsoft Access is installed on your computer, you
can use the Briefcase as a replication tool by simply dragging an .mdb file from the Windows Explorer onto the Briefcase
icon on the Windows desktop. Your database is converted into replicable format and becomes a member of your replica
set. The Briefcase menus include commands to synchronize the replicas.

When you install Microsoft Access, the Setup program adds class ID (CLSID) entries for .mdb files and for the Briefcase
reconciler to the Windows registry. (Only Microsoft Access installs the Briefcase reconciler.) The reconciler includes the
code required to support replication and synchronization. When you drag an .mdb file onto the My Briefcase icon, Windows
recognizes the class ID and responds by calling the reconciler. The reconciler converts the database into a replicable form,
then gives you the option of specifying the location of the Design Master; you can use this feature to designate either the
replica in your Briefcase or the replica in the original location the Design Master. When you synchronize the replicas, the
Briefcase calls the reconciler to merge the replicas. With Briefcase replication, synchronization cannot be scheduled; it
occurs only when the Update command is clicked and only between the current member and the specified member.

Note Before converting the database, Microsoft Jet asks if you want to make a backup. If you anticipate that
any users will need to use a nonreplicable version of the database, it's a good idea to make this backup. Also, if
you attempt to convert an .mdb from a previous version, you will be asked to first convert the database to
Microsoft Access 2000.

You can use the Briefcase with files other than .mdb files, and with applications other than Microsoft Access. However,
doing so will not call the Microsoft Jet replication code; it will call the default Briefcase code instead. If you use the
Briefcase when Microsoft Access is not installed or with a non-Microsoft Jet database, dragging a file into the Briefcase is
equivalent to simply copying the file into the Briefcase—there is no conversion to replicable format. Therefore, when you
update files on your main computer with files from the Briefcase, the Briefcase simply copies over the original
file—changes to data and objects are not merged, they are overwritten.

Jet and Replication Objects (JRO)

In any application that supports ADO, JRO provides a programmatic interface to replication functionality in Microsoft Jet
databases. Methods and properties within JRO can be used to make a database replicable, change the replicability of
objects within the database, create replicas, synchronize replicas, and manage certain properties within a replicated
database. The new features in Microsoft Jet replication 4.0 are exposed only in JRO. They include setting a replica's
priority, the ability to execute an indirect synchronization in code, setting a replica's visibility, and much more.

Data Access Objects (DAO)

In applications that support Microsoft Visual Basic for Applications (VBA), DAO provides a programmatic interface to
replication functions. Microsoft Jet includes a variety of extensions to the DAO programming interface. These extensions
allow developers to convert a database to replicable format, make additional replicas, synchronize replicas, and manage
certain properties of a replicated database. These properties include the description of a single replica or of a replica set,
the ID of a particular replica or of the replica set's Design Master, the default replica to be used in an exchange, and the
local/global property of each object in the database.

Note DAO does not support any new features that are introduced in Microsoft Jet replication 4.0. In all new
feature cases, default values are used. For example, when you are creating a replica, a replica with global
visibility is always created.

Conflict Resolution

Microsoft Jet uses a merge reconciler that merges individual changes from two replicas involved in a synchronization, so
that after the synchronization is complete, the resulting data set is a combination of the data in both replicas. This merge
process may cause conflicts, which need to be resolved. Note that in Microsoft Jet 4.0 replication, there is no longer a
distinction between a conflict and an error; both are just conflicts. The possibility of a conflict might depend upon whether
the table involved in the synchronization is set to track changes at the column or row level. Once it is determined that a
conflict exists, an algorithm based on the priority assigned to each of the replicas is used to select the winner and the
loser. Each of these steps is described in the following section.

Unified Treatment of Conflicts and Errors

In previous versions, Microsoft Jet replication differentiates between synchronization conflicts and synchronization errors.

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

5 of 16 9/6/2006 7:06 PM

Synchronization conflicts occur when two users update the same record in two different databases in a replica set.
Synchronizing the two databases succeeds, but only one of the two sets of changes are applied to both databases. Thus,
one replica "loses." Synchronization errors occur when a change to data in one database in a replica set cannot be applied
to another database in the replica set because the change would violate a constraint, such as referential integrity or
uniqueness. Synchronizing the two databases succeeds, but the records that caused the error are not exchanged.
Therefore, each replica retains the original data for that record.

With Microsoft Jet 4.0 replication, the events that cause synchronization conflicts and synchronization errors are both
viewed simply as synchronization conflicts, and a single mechanism is used to record and resolve them, making resolution
of such problems easier. When a conflict occurs, a resolution algorithm is used to determine a winner and a loser. The
winning record is placed in the table in both replicas. The losing record is placed in a "conflict table" and replicated to both
replicas. The conflict table is a replicated table named TableName_Conflict (where TableName is the name of the table
where the conflict occurred). Microsoft Access automatically invokes an application to assist the user in resolving entries in
conflict tables. The new Microsoft Replication Conflict Viewer can then be used to reconcile and resolve synchronization
conflicts.

Note The same Microsoft Replication Conflict Viewer can be used with either SQL ServerÂ™ 7.0 or Microsoft Jet
4.0 replicable databases.

Column-Level Tracking vs. Row-Level Tracking

In previous versions, conflicts are determined at the row (record) level. In other words, if two users in two different
replicas changed the same record for customer, but each changed a different column in the record, the two records would
conflict when the replicas were synchronized. Suppose that one user changed the zip code and the other changed the
phone number. Note that although the changes themselves do not conflict because they were made in two separate fields,
a synchronization conflict would still occur as the changes are being tracked on a record-level basis.

In Microsoft Jet 4.0, replication can now track data updates at the column (field) level. Column-level tracking lets you
merge the same two records and only reports a conflict if simultaneous changes have been made to the same field. Thus,
in the above scenario, there would no longer be a synchronization conflict since the two users changed the values of
different fields. A table that has its ColumnLevelTracking property set to True will significantly reduce the potential for
conflicts and simplify the maintenance of replicated databases, if different users frequently edit the same data.

Note Microsoft Jet column-level tracking will work in conjunction with the corresponding Microsoft SQL Server
7.0 capability when Microsoft Jet and Microsoft SQL Server replication are used together.

Column-level tracking is the default behavior for all tables created in Microsoft Jet 4.0. Column-level tracking does create a
small performance hit, due to the added system columns and compare logic, and therefore should not be used in cases
where users are doing large updates to isolated tables, that is, tables other users would not be updating. Selecting the
Row Level Tracking check box (in the Database window, right-click the table to open the TableName Properties dialog
box) prior to making the table replicable will set a table to use row-level tracking. A table's tracking behavior cannot be
changed once the table has been made replicable. If you would like to change the tracking of a replicable table, you will
need to make the table local (in the Database window, right-click the table and clear the Replicable check box and click
the Apply button), select or clear the Row Level Tracking check box, then make the table replicable again.

Note For replicas converted from an earlier version of Microsoft Jet, the default behavior is to retain the
previous behavior, that is, row-level conflict resolution.

Priority-Based Conflict Resolution

In previous versions, synchronization conflicts were resolved based upon an algorithm whereby the most often changed
copy of a record won. This algorithm worked, but was unsophisticated and confusing.

Microsoft Jet 4.0 introduces an algorithm whereby replicas in a replica set are assigned priorities and the highest priority
replica wins in the case of a synchronization conflict. Where priorities are equal, the replica with the lowest replica ID wins.

Note The priority-based conflict-resolution algorithm will work in conjunction with the corresponding Microsoft
SQL Server 7.0 capability when Microsoft Jet and Microsoft SQL Server replication are used together.

Replicas are assigned a priority, a real number between 0 and 100, inclusive, when the replica is created. At the time a
database is made replicable, the Design Master's priority is set to 90. The default priority of additional replicas is 90
percent of the parent replica's priority. You can easily specify another priority value either by using the Create Replica
dialog box in Access or by using the CreateReplica method in JRO. Users must have dbAdminister privileges in order to
specify that the priority of a replica be greater than the priority of the replica from which it is being created. Using the file
system to make a copy of a replica will create a replica with the same properties and priority as the source replica.

Note All replicas upgraded from an earlier version of Microsoft Jet are given an identical priority value of 90.
Replicas created through the MakeReplica method in DAO have a default priority equals to 90 percent of the
parent replica's priority.

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

6 of 16 9/6/2006 7:06 PM

Historical priority

One complicated concept pertaining to priority is that of historical priority. The easiest way to describe historical priority is
through an example. Suppose you have three replicas: ReplicaA with a priority of 100, ReplicaB with a priority of 95, and
ReplicaC with a priority of 90. The users of all three replicas make a conflicting update to the same record. When ReplicaA
synchronizes with ReplicaC, ReplicaA will win the conflict because it has a higher priority. When ReplicaC synchronizes with
ReplicaB, ReplicaC will win the synchronization conflict because the record involved actually came from ReplicaA, which has
a higher priority than ReplicaB. The benefit to using the historical priority is that changes made at the highest priority
replica never lose during synchronization if there is a conflict.

Conflict Types

The following summarizes the types of synchronization conflicts that can be encountered:

Note Design changes are always processed before data changes. Also, all conflicts, except update-delete and
locking, are resolved by using the priority of the replicas involved.

Simultaneous Update—The most frequent type of conflict is when two users simultaneously update data in the same
record or field, depending upon the tracking level that has been set for the table.
Update-Delete—Microsoft Jet 4.0 replication has retained behavior from Microsoft Jet 3.x, in that delete actions are
always processed. This means that, no matter what the replica's priority is, the deleted record will always win in the case
of a conflict and be deleted. However, in Microsoft Jet 4.0, the record that is about to be deleted is checked to see if there
are updates that were unknown prior to the delete occurring. If this is the case, the updated record is logged to its
appropriate conflict table.
Unique Key—Two records contain the same key value, even though only unique values are permitted.
Table-Level Validation—A record contains a field value that does not meet a table-level validation rule.
Referential Integrity—There are three kinds of referential-integrity conflicts:
On Delete—The primary key record has been deleted in another replica, and therefore the foreign record has been
rejected.
On Update—The primary key record has been updated in another replica, and therefore the foreign record has been
rejected.
Foreign Key—A foreign-key violation resulted from an invalid primary key record that was involved in another
replication-conflict type.
Locking—The record change could not be applied during synchronization, because another user locked the table involved.
The synchronization fails, but no conflict is logged. The solution is to try the synchronization again when the table is not
locked.

Note Partial replicas receive conflicts associated with all the records in their filters, including newly added
records that are added to a partial replica during synchronization and might have conflicts associated with them.

Creating a Custom Conflict-Resolution Function Using JRO

In Microsoft Jet 4.0, all conflicts and errors are logged as conflicts in conflict tables, which are replicated throughout the
entire replica set. This is a decentralized conflict model where any user can view a conflict and change the outcome of the
conflict by using the Microsoft Replication Conflict Viewer, automatically invoked when a conflict is encountered. If you
prefer to automate conflict resolution for your application, you can write a custom function to resolve conflicts, then
override the built-in application by using JRO to set the ConflictFunction property to the name of your custom function.

When you enhance the Microsoft Jet algorithm with your own VBA function, Microsoft Jet will still initially resolve conflicts
by using its own algorithm, but you can use your code to manipulate the results. The ConflictFunction property can be
set only in the Design Master, since it is considered a design change to the database.

Here is a simple function that uses the ConflictTables property in JRO to display the name of any table with a conflict in
the Debug window:

Public Function Resolve() 'Find tables with conflicts
 Dim conn As New ADODB.Connection
 Dim rs As New ADODB.Recordset
 Dim repRW As New JRO.Replica

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data source=C:\demo\NWindRW.mdb;"
 repRW.ActiveConnection = conn
 Set rs = repRW.ConflictTables
 rs.MoveFirst
 While NOT rs.EOF
 Debug.Print rs(0) & " has a conflict and"
 Debug.Print rs(1) & " is the name of the a conflict table."
 rs.MoveNext
 Wend
End Function

You can customize this function to resolve conflicts according to your own business rules. For example, if your application
includes a special Date/Time field that is always updated when a record is inserted or edited, your VBA function could use

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

7 of 16 9/6/2006 7:06 PM

this field to select the record with the most recent update as the winner. However, because your code will replace the
Microsoft Replication Conflict Viewer, your function must resolve all conflict situations.

Note For more information about replication methods and properties exposed through JRO, see the Jet
Replication Objects Help file (Msjro.chm).

Preventing Record Deletion in Replicas

Many replication users requested that a special type of replica be provided that would permit a replica to be defined as one
where a user could not delete records. This attribute is supported in Microsoft Jet 4.0 replication.

An example of when this attribute would be useful is when a full replica is given to a salesperson. The salesperson might
be tempted to delete all customer records that were not of interest. However, it would be unfortunate, to say the least, if
these deletes were then propagated to all replicas in the replica set. While you can prevent this from happening by setting
the appropriate security permissions, that solution requires you to understand Microsoft Jet security and to set the
appropriate permissions on every table. Using the prevent deletes replica type is a simpler solution.

Note A prevent deletes replica can be created only through the Access user interface, by selecting the Prevent
deletes check box in the Create Replica dialog box.

Replica Visibility: Global, Local, and Anonymous

Microsoft Jet 4.0 replication defines three degrees of visibility for replicas. A replica's visibility can be defined as global,
local, or anonymous.

Global replicas have the same visibility as replicas that are created in Microsoft Jet 3.x. A global replica is a replica that can
synchronize with all other global replicas in the replica set. A global replica can also synchronize with any replica created
from it, with some exceptions. (For details, see the following paragraphs about local and anonymous replicas.) The ability
of a global replica to synchronize with any other global replica in the replica set is possible because the information for the
replicas is stored in the system table MSysReplicas. When a Jet database is initially converted to a replica and becomes the
Design Master of the replica set, its default visibility is global. By default, any new replica created from a global replica is
also a global replica. From a global replica, you can create a global, local, or anonymous replica.

Local replicas can synchronize only with their parent, a global replica, and are not permitted to synchronize with other
replicas in the replica set. This way, you can easily control the topology in a replica set. For example, local replicas can be
used to enforce a star topology at individual sites where you want to ensure that synchronization between the sites goes
through a global hub at each site. Other replicas in the replica set will not be aware of the local replica. The parent replica
can schedule synchronizations with a local replica by using Replication Manager. The parent replica proxies any replication
updates and conflicts for the local replica. Local replicas always have a priority of 0. This value cannot be changed.

Anonymous replicas are important for the Internet scenario where you do not want to keep track of every download of the
database. An anonymous replica can synchronize only with its parent, a global replica. Anonymous replicas are very similar
to local replicas, with one big exception. The anonymous replica information is not permanently stored in the system table
MSysReplicas. These are replicas that, for example, subscribe through the Internet and do not have any particular identity
in the parent replica, but instead proxy their identity for updates through the parent replica. By removing the information
about the anonymous replica after a period of time of inactivity, the overall size of replicas in the replica set is reduced if
many replicas in your set are anonymous replicas. In addition, removing information about anonymous replicas helps to
keep out unnecessary topology information about replicas that participate only occasionally. The parent replica, always a
global replica, cannot schedule synchronizations with an anonymous replica. Anonymous replicas always have a priority of
0. This value cannot be changed.

Note It is recommended that anonymous replicas not be managed by using Replication Manager. If a replica
needs to be managed for scheduled synchronizations, a global or local replica should be used.

Other limitations:

If the parent replica is moved through any method other than the Move Replica command in Replication Manager, it will
receive a new replica ID and will no longer be visible to its local or anonymous replicas. Thus the replicas will no longer be
able to synchronize.
Local and anonymous replicas are not supported for Briefcase replication.
Local and anonymous replicas cannot be converted into a Design Master.
You can create replicas from a local or an anonymous replica. The new replica will inherit the same properties as the
original replica, except for the replica ID. Therefore, from a local replica, you can create only a local replica; likewise, you
can create only an anonymous replica from an anonymous replica.
A Microsoft SQL Server 7.0 global (publishing) replica will be able to create Microsoft Jet replicas with any of the three
degrees of visibility. However, a Microsoft SQL Server 7.0 local or anonymous replica cannot create Microsoft Jet replicas.

New Microsoft Access Project-Storage Format

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

8 of 16 9/6/2006 7:06 PM

In previous versions, individual Microsoft Access objects (for example, forms, reports, macros, and modules) are identified
and tracked, allowing changes to individual objects to be synchronized. In other words, if a Microsoft Access form is
changed in the Design Master replica and no other objects are changed, only the changes to the form are replicated when
the replica set is synchronized.

However, in Microsoft Access 2000, all Microsoft Access objects (for example, forms, reports, data access page links,
macros, and modules) are stored in a single binary large object (BLOB) within the database file. (Note that if you make a
data access page link replicable, the data access page .htm file it points to must be stored on a network location so that
the page can be accessed from the Design Master and all replicas in the replica set.) In this format, the individual objects
cannot be identified or tracked by Microsoft Jet replication. Therefore, if the Microsoft Access project in the Design Master
is made replicable, all Microsoft Access objects are made replicable and synchronized if any single object is modified.
However, you can choose to not make the Microsoft Access project replicable prior to making the database replicable by
setting the ReplicateProject property in the custom database properties to False. In this case, the Microsoft Access
project in each of the replicas is not replicable, and all Microsoft Access objects created in a replica are local.

Note Each replica in a replica set must be individually upgraded. When upgrading, all Microsoft Access objects
(forms, reports, macros, and modules) stored in the Design Master are made replicable. Local Microsoft Access
objects stored in each replica, except those in the Design Master, will be lost unless they are first imported into
the Design Master prior to upgrading. Local tables and queries remain local in all replicas of the replica set.

Microsoft Jet/SQL Server Bidirectional Replication

In previous versions of Microsoft SQL Server and Microsoft Jet, data could be replicated to a Microsoft Jet database, but
changes made in the Microsoft Jet database could not be used to update the Microsoft SQL Server database. With Microsoft
Jet replication 4.0 in combination with Microsoft SQL Server 7.0, support for bidirectional replication between Microsoft Jet
and SQL Server has been implemented. Not only can changes made to data in a Microsoft SQL Server database be
replicated to a Microsoft Jet database, but changes to the data in a Microsoft Jet database can be synchronized to and
reconciled with a SQL Server database.

A mixed replica set containing both SQL Server replicas and Microsoft Jet replicas is required for this feature to work. To
begin creating this replica set, you need to first create a SQL Server database. If you are starting with a Microsoft Jet
database, you can use the Upsizing Wizard in Microsoft Access 2000 to create a SQL Server version of your database. Once
your SQL Server database is made replicable, you can start creating SQL Server or Microsoft Jet replicas.

There are some limitations:

Only data can be replicated between Microsoft Jet and Microsoft SQL Server. Microsoft Access objects (for example, forms,
reports, data access pages, macros, and modules) cannot be replicated to Microsoft SQL Server and will continue to reside
only in the Microsoft Jet database.
The only topology supported in Microsoft Jet/Microsoft SQL Server replication is "hub and spoke." The Microsoft SQL Server
database is always the hub. The Microsoft Jet replicas at the spokes cannot synchronize with other Microsoft Jet replicas;
they can synchronize only with their Microsoft SQL Server hub database.

For more information about replicating data between Microsoft SQL Server and Microsoft Jet databases, see "Implementing
Merge Replication to Access Subscribers" in the documentation provided with SQL Server.

Partial Replicas

A partial replica is one that contains a subset of data. You can use either the Partial Replica Wizard or VBA code to create a
partial replica. To run the Partial Replica Wizard in Access, point to Replication on the Tools menu, then click Partial
Replica Wizard.

A partial replica is defined by a filtering expression on a table, similar to a WHERE clause and relationship filters. For
example, to create a partial replica with customers from California, you would specify "Region = 'CA'". If you wanted to see
all the orders for customers in California, you would also set the relationship filter (either by using the Partial Replica
Wizard or by using JRO, as shown in the PartialRep code sample below) on the CustomersOrders relationship. You cannot
use user-defined or aggregate functions, nor can you prompt the user at run time for parameter values. By using VBA, you
can apply restrictions to any number of tables. The Partial Replica Wizard limits you to placing restrictions on a single
table.

You must enclose date variables with the number sign (#). For example, to select orders placed after March 31, 1997, and
before December 31, 1998, enter the following:

[Order Date] > #3/13/95# AND [Order Date] < #12/31/96#

You must surround the contents of Text and Memo fields with quotation marks. For example, to specify Jane Doe's name,
enter the following:

[FirstName] = "Jane" AND [LastName] = "Doe"

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

9 of 16 9/6/2006 7:06 PM

To enter numeric values, use the field's name and the value. For example, to enter 1 as the category ID, enter the
following:

[CategoryID] = 1

Note Multiple filters are OR'ed together. For example, if you set a filter of "Region = 'CA'" for the Customers
table and a filter of "Value > $1000" for the Orders table, the result will include all records for customers from
California plus all orders with a value greater than $1,000. You would not get orders of over $1,000 only for
customers from California.

JRO provides a simpler way than DAO to create more sophisticated partial replicas by applying restrictions to any number
of tables, through filter and criteria properties. The following example shows how you can create a partial replica, set a
filter on a table and a filter on a relationship, and populate the partial replica with data:

Public Sub PartialRep()

' This code demonstrates how to create a partial replica with a
' relationship filter and a table filter.
' NOTE: PopulatePartial requires an exclusive connection.

 Dim repMaster As New JRO.Replica
 Dim repPartial As New JRO.Replica

 repMaster.ActiveConnection = _
 "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"

 ' Northwind.mdb is already replicable.
 repMaster.CreateReplica "C:\Program Files\Microsoft Office\" & _
 "Office\Samples\Partial of Northwind.mdb", _
 "Partial Replica of Northwind", jrRepTypePartial

 Set repMaster = Nothing

 ' PopulatePartial requires an exclusive connection to the database.
 repPartial.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Program Files\Microsoft Office\" & _
 "Office\Samples\Partial of Northwind.mdb;" & _
 "Mode=Share Exclusive"

 repPartial.Filters.Append "Orders", jrFilterTypeRelationship, _
 "CustomersOrders"

 repPartial.Filters.Append "Customers", jrFilterTypeTable, _
 "Region = 'CA'"

 repPartial.PopulatePartial "C:\Program Files\" & _
 "Microsoft Office\Office\Samples\Northwind.mdb"

 Set repPartial = Nothing
End Sub

You should call the PopulatePartial method under any of the following circumstances:

Before synchronizing a full and a partial replica for the first time. Calling the PopulatePartial method ensures that the
partial replica has all the system information required. If you simply create an empty partial replica and do not call the
PopulatePartial method before synchronizing, you will see the message "the filters are not synchronized", even if no
filters are set on the partial replica. The PopulatePartial method is required to initialize the replica with internal system
information before the first synchronization.

Note The PopulatePartial method works only with direct connections; it does not support indirect
synchronization such as dropbox (file transfer) synchronization or Internet synchronization by using an HTTP or
FTP folder.

Whenever you modify the filter for a partial replica, the PopulatePartial method removes any records from the partial
replica that do not comply with the new filter. Simply using the Synchronize method after changing the filters does not
remove these "orphaned" records.

Synchronizing between full and partial replicas may require careful attention. Say you create a replica set with three
members: Full_1, Partial_1, and Full_2. Now assume Full_1 synchronizes with Partial_1, and because Partial_1 has a filter,
it gets only a subset of the changes made at Full_1. Now Partial_1 synchronizes with Full_2. Obviously only the subset of
the changes stored in Partial_1 can be sent to Full_2. It would be a mistake to assume that Full_2, having successfully
completed the exchange, has all the updates from Full_1. The only way to guarantee that Full_2 has all the changes is to
synchronize it with Full_1. When synchronizing full and partial replicas, the best process is to treat partial replicas as "leaf"
nodes. That is, designate them as the end of a synchronization chain. Doing this also increases the efficiency of
synchronizations, because the protocol that ensures correct propagation of updates between partial and full replicas may
result in redundant data exchange if the partial replicas are not moved to the end of the synchronization chain.

Partial replicas introduce a number of subtleties for deleting or updating records when referential integrity and cascading
updates or deletes are used in the same application. Consider what might occur in a simple database with two tables:
Customers and Orders. Referential integrity is enforced between these tables, but cascading updates and deletes are not

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

10 of 16 9/6/2006 7:06 PM

enabled. Consider Customer A, who has Orders records in the full replica. Now assume there is a partial replica with only
the Customers table. If Microsoft Jet allowed the records pertaining to Customer A to be deleted at the partial replica, this
delete would fail when it was sent to the full replica, because there would be existing records for Customer A.

To prevent this, Microsoft Jet traps attempts to update or delete primary keys records in the primary key table of a partial
replica, and permits them only if:

The primary key table has no foreign key records.

–or–

For each foreign key table, the relationship filter between the primary key table and the foreign key table is set.

–or–

The foreign key table's table filter is set to True (which indicates all records in the foreign key table are present).

For partial replicas, Microsoft Jet looks only at the immediate foreign key table to decide whether to permit an update or
delete. However, it's important to remember the effect that cascading updates and deletes can have. Consider an example
of three related tables (Customers, Orders, and OrderDetails). If cascading updates and deletes are enabled, an attempt
to update a Customer record in a partial replica will also attempt to update any Order records, which in turn will attempt to
update any OrderDetails records. If cascading updates and deletes are not enabled, an update to a Customer record would
check the Order records and ignore the OrderDetails records.

Security

Replicated databases use the same security model as nonreplicated databases. The permissions assigned to a user's logon
ID control the actions that user can take on the database.

The application designer must ensure that the same security information is available in each replica. There are two ways to
do this:

Make the exact same workgroup information file, System.mdw, available to each replica. The security file cannot be
replicated, but it can be physically copied to each location.
Re-create the entries for users and groups at each location in the local workgroup information file. To do this, copy the
user and group names and associated personal identifiers (PIDs) from System.mdw into the local file. Make sure to copy
the entries exactly.

A user with Administrator permission can do the following:

Convert a nonreplicable database into a replicable database.
Execute the Move Replica command for the Design Master.
In the Design Master, make a local table or query replicable, or make a replicable table or query local.
Modify the retention period.
Create replicas with a higher priority than the replica they are being created from.

In addition, a user with Administrator permission can execute the Recover Design Master command from any replica.

Note Make sure there is always at least one user with Administrator permission on the database. If the Design
Master and the associated System.mdw file are destroyed (for example, through a hard disk failure), it is
possible to designate another replica as the new Design Master—but only a user with Administrator permission
can do this.

Registry Entries

Parameters for Microsoft Jet 4.0/Microsoft Access 2000 replication components are stored in the system registry. In
addition to the entries listed here, the registry includes many entries for the Synchronizer (formerly known as the
Transporter) and Replication Manager, such as the log file location, the last viewed replica, the security database, and so
on, under the following subkeys:

HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\Transporter

HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\Replication Manager

Synchronizer Transport Order Registry Entry

When you execute an indirect synchronization by using the Synchronize method in JRO or by clicking Synchronize Now

in Replication Manager, a "you pick" synchronization will be executed by using the Synchronizer. This means the
Synchronizer will first read the registry for the order in which it should attempt to execute each type of synchronization.
The default order is file system (dropbox) (1), Internet (2), then direct synchronization (3), if the first two methods fail.

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

11 of 16 9/6/2006 7:06 PM

These attempts do not cause any significant performance hit on synchronizations. Users can control the order of the
attempts and even disable a particular synchronization type by using these new registry values.

For example, if you are always using a dial-up network, you would want to disable direct synchronization. To disable a
synchronization transport type, set the corresponding registry value to 0 (zero). The default registry values are as follows:

HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\Transporter

"Priority_FS" = 1

"Priority_Internet" = 2

"Priority_Direct" = 3

Note You must be very careful when disabling different synchronization transport types. If you disable direct
synchronizations, Replication Manager cannot synchronize any replica of the replica set with an unmanaged
replica, and you cannot use the Synchronize Locally Managed Replicas option, even if the replicas are
located on the same machine. Special attention should also be taken when disabling indirect or Internet
synchronizations. This feature is for advanced replication users who have designed their applications accordingly.

Structure of a Replicable Database

Before you can use replication, you must convert the original database to replicable format. Any of the tools listed earlier
can help you do this. A database in replicable format includes a number of tables and fields that are not typically present in
a nonreplicable database. When you use the tools listed earlier, Microsoft Jet automatically adds the fields and tables it
needs to manage your replicated application. A database in replicable format includes:

User tables—The tables an application developer constructs (for example, Products, Prices, Customers, and so on). When
you convert the database to replicable format, Microsoft Jet retains your table definitions and adds additional fields it
needs to manage the application.
System tables—The tables Microsoft Jet requires to manage the application. These tables are generally hidden from
users. When a Microsoft Jet database is converted into a replicable database, Microsoft Jet adds new system tables that
record the history of exchanges between replicas, the location of other replicas in the replica set, and other information
required by replication.
GUID—A field that provides a 16-byte globally unique identifier (GUID) for each row in each table. A GUID is guaranteed
to be unique, even if two users simultaneously construct a new row at different locations. If Microsoft Jet adds this field to
your replicated tables, the default name for the field is s_GUID. If your table already includes a numeric field whose data
type is Replication ID, Microsoft Jet will use the existing field instead of adding a new one.
Generation—A field used to ensure that only changed data is exchanged when two replicas are synchronized. Microsoft
Jet adds this field to each replicated table in your application. The default name for the field is s_Generation.
Lineage—A field that tracks the version and replica number of each record in each table. Microsoft Jet uses this field to
keep track of changes that have already been processed and to ensure that changes to a record are not forever sent in a
circle between replicas. Microsoft Jet adds this field to each replicated table in your application. The default name for this
field is s_Lineage.
Column Lineage—For each table that is column-level tracked, Microsoft Jet adds the Column Lineage field. This field
tracks the version and replica number of each column (field) in each replicated table. Microsoft Jet uses this field to keep
track of changes and to determine whether a data conflict has occurred when multiple users have updated the same row.
The default name for this field is s_ColLineage.

Additional fields are inserted in replicated tables when there are OLE links to embedded graphics or Memo fields. This is an
exception to the rule that data changes are tracked on a record level for tables whose RowLevelTracking property has
been set to True. Because OLE objects may be of a significant size (a bitmap image may easily be 1 megabyte [MB] or
more), and therefore expensive to send over a communications line, Microsoft Jet replication sends the OLE Object field
only if it has been modified.

System Tables

System tables support code within Microsoft Jet. You should not rely upon the format remaining the same between
releases. Treat the descriptions of these tables as "for your information only," which may assist you in debugging certain
applications.

MSysConflicts stores information related to each and every conflict that has been added to its appropriate conflict table.
This table is replicated to all members of the replica set.
MSysExchangeLog is a local table that appears in each member of the replica set and stores information about
synchronizations that have taken place between this member and other members of the replica set.
MSysGenHistory stores a history of generations. It contains a record for each generation that a replica knows about. It is
used to avoid sending common generations during synchronizations and to resynchronize replicas that are restored from
backups. This table appears in all members of the replica set, but a process slightly different from that used with normal
replicated tables merges it.

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

12 of 16 9/6/2006 7:06 PM

MSysOthersHistory stores a record of generations received from other replicas. It contains one generation from every
message seen from other replicas.
MSysRepInfo stores information relevant to the entire replica set, including the identity of the Design Master. It contains
a single record. This table is replicated to all members of the replica set.
MSysReplicas stores information about all replicas in the replica set. This table is replicated to all members of the replica
set.
MSysSchChange stores design (schema) changes that have occurred in the Design Master so that they can be dispersed
to any member of the replica set. The records in this table are deleted periodically to minimize the size of the table.
MSysSchedule stores information for scheduled synchronization. The Synchronizer for a local replica set member uses
this table to determine when the next synchronization with another Synchronizer should take place, and how to
synchronize data and design changes with the other Synchronizer.
MSysSidetables identifies the tables that experienced a conflict and the name of the table that contains the conflicting
records. This table is visible only if a conflict has occurred between the user's replica and another in the replica set. This is
a special replicable table, similar to a conflict table, which is replicated to all replicas in the replica set.
MSysTableGuids relates table names to GUIDs. Table GUIDs are used in tables such as MSysTombstone as a reference to
a table name stored in this table. This allows efficient renaming of tables. In addition, this table includes the level number
used for ordering tables so that updates can be processed efficiently. This is a local table that is updated by the tracking
layer at the Design Master and, as part of the processing of design changes, at all other members of the replica set.
MSysTombstone stores information about deleted records, and allows deletes to be dispersed to other replicas. This table
appears in all members of the replica set.
MSysTranspAddress stores addressing information for Synchronizers and defines the set of Synchronizers known to this
replica set. This table appears in all members of the replica set.
MSysContents stores the information regarding records that should be included in partial replicas. This table appears only
in partial replicas.
MSysFilters stores the information regarding the filters that are to be applied to partial replicas. This table appears only
in partial replicas.
MSysTranspCoords stores the display layout of the Synchronizers and replicas used by Replication Manager.

GUIDs

Just as fingerprints distinguish one person from all other people, every object in a set of data must have a unique identifier
to distinguish it from all other objects. This identifier is called a GUID (globally unique identifier) or UUID (universally
unique identifier). Within a database, the primary key serves a similar purpose; it ensures that every record in a table has
a unique identifier.

When you replicate a database, Microsoft Jet adds several fields to each table in the database. One of those fields,
s_GUID, contains a GUID that uniquely identifies a single record.

You can use the s_GUID field as the primary key in the database. The advantage of doing so is that it virtually eliminates
the possibility of duplicate keys; the potential disadvantage is that the GUID field does not convey any meaning to the
user.

If you choose AutoNumber or Number as the data type for a field, you can select Replication ID as the setting for the
FieldSize property. The result is that a GUID is assigned for the row and stored in the field. If a table already includes a
field with a GUID, the s_GUID field is not added when you replicate the table. Microsoft Jet uses the existing GUID instead.

GUID generation

The question "How do I know a GUID is really unique?" is a common one. The process of generating a GUID includes
numerous checks to ensure its uniqueness. GUIDs are created from:

The network node ID.
A time value.
A clock sequence value.
A version value.

Here is a sample GUID:

2fac1234-31f8-11b4-a222-08002b34c003

The hyphens make it easier to read and are used only when the GUID is displayed; they are not part of the GUID. A GUID
is derived from the following components:

Time is a 60-bit timestamp representing the number of 100ns ticks since October 15, 1582 AD. This means time values
are valid until approximately AD 3400.
Version identifies the version of the algorithm used to generate the GUID.
Clock sequence accounts for loss of continuity of the clock, for example when a clock is reset.

A GUID includes the following fields

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

13 of 16 9/6/2006 7:06 PM

<time_low>-<time_mid>-<time_hi_and_version>-<clock_seq_hi_and_reserved>-<clock_seq_low>-<node>

where:

The time_low field is set to the least-significant 32 bits of the timestamp.
The time_mid field is set to bits 32 through 47 of the timestamp.
The 12 least-significant bits of the time_hi_and_version field are set to bits 48 through 59 of the timestamp. The four
most-significant bits are set to the 4-bit version number of the GUID algorithm being used.
The six least-significant bits of the clock_seq_hi_and_reserved field are set to the six most-significant bits of the clock
sequence. The most-significant two bits are set to "0" and "'1", respectively.
The clock_seq_low field is set to the eight least-significant bits of the clock sequence.
The node field stores the node ID. The construction of the node ID depends on whether a network card is present. If a
network card is present, the node ID is retrieved from NetBIOS. The first six bytes are extracted from the synchronous
adapter status NCB. This is the IEEE 802 48-bit node address.

If a network card is not installed, the node ID is set to a 48-bit number (a 47-bit random number plus 1 bit for local
usage). This number is not guaranteed to be unique, even on the generating machine, but is unlikely to be duplicated on
another machine. However, because GUIDs are time + sequence, this is a reasonable approximation for a local GUID. The
node ID returned is explicitly made into a multicast IEEE 802 address so that it will not conflict with a "real" IEEE
802-based node address. The LocalOnly bit contains 1 if the address was generated, 0 if it's a real IEEE 802 address. The
48-bit number will be composed of:

The computer's name.
The value of the performance counter.
The system memory status.
The total bytes and free bytes on drive C.
The stack pointer (value).
A LUID (locally unique ID).
Whatever random data was in the node ID buffer at create time.

GUID usage

There can be more than one field with coltypeGUID in a table, but there can be only one autogenerated column of
coltypeGUID in a table, regardless of whether the table is replicable.

If an autogenerated GUID field is added to a table, GUID values are generated for all records in the table. The value of an
autogenerated GUID cannot be changed or deleted.

Generations

When you convert a table to replicable format, Microsoft Jet adds a new field, s_Generation, to every replicable table in the
replicated database.

The s_Generation field controls which records are sent during an exchange. When a record is modified, its generation is set
to zero (0). In general, all records with generation 0 are sent during an exchange and the generation for the record is
incremented to one more than the last generation, which now becomes the new highest generation.

When an exchange occurs, the sending replica knows the last generation sent to that specific receiving replica. Only
records with generations higher than the previous generations or generation 0 are sent.

The receiving replica will not apply generations received out of sequence.

In some cases, Microsoft Jet replication may determine that there are too many records to be sent in a single exchange
message. In these situations, the first set of records for the exchange will be of one generation and the following sets of
records will be of higher generations. Therefore, it is possible that a single exchange may contain records with different
generations.

Generally, there is one generation field per record. To optimize exchanges for databases that contain Memo or OLE Object
fields (sometimes referred to as a BLOB, or binary large object) an extra generation field is associated with each BLOB.
This generation value is set to 0, ensuring it is sent during the next exchange, but only if the BLOB is modified. If other
fields in a record are modified, but not the BLOB field, the BLOB generation is not set to 0 and the BLOB is not sent with
the exchange.

Lineage

The s_Lineage field is added to every replicated table in the database.

The lineage is used to determine which replicas have already received a specific update and also to determine the winner
when conflicts occur. The lineage consists of a series of entries representing each replica that has changed this record.
Each lineage entry consists of a shortened form (4 bytes) of the replica ID and a version number (4 bytes). The shortened

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

14 of 16 9/6/2006 7:06 PM

version of the replica ID is the replica's nickname. The version number starts at 1 and is incremented each time the record
is modified.

Column Lineage

The s_ColLineage field is added to every replicated table that has column-level change tracking specified in the database.
(Note that, in Microsoft Jet 4.0, the default behavior when a table is made replicable is for changes to the table to be
tracked at the column level.)

The column lineage is used to determine when conflicts occur with the granularity of the column level. The column lineage
consists of a series of entries representing each column. Each column lineage entry consists of a shortened form (4 bytes)
of the replica ID and a version number (4 bytes) that has made a change to that column. The shortened version of the
replica ID is the replica's nickname. The version number starts at 1 and is incremented each time the record is modified.

Design Considerations

Microsoft Jet enforces a 4096-byte and 255-field limit to any record. These limits include fields and data you add to tables
yourself, as well as any fields and data Microsoft Jet adds in the course of replication. When you design tables in an
application you plan to replicate, make sure you allow for the fields Microsoft Jet is likely to add.

At a minimum, every record in a replicated table will receive s_GUID, s_Lineage, s_ColLineage (for tables where
column-level tracking has been set), and s_Generation fields, which collectively require approximately 32 bytes per record.
This means you should design tables with no more than 251 fields (255 maximum, minus 4) and 4,064 bytes (4,096
maximum, minus 32). This is not generally a hindrance to well-designed applications, because very few well-designed
applications use either the maximum allowable fields or bytes in a single record. If your application uses Memo or OLE
Object fields (BLOB fields), replication will add an additional 4-byte field per BLOB. This is the result of an exchange
optimization, whereby only the long binary fields that have been modified are sent in an exchange.

Microsoft Jet replication does not support CHECK constraints. CHECK constraints are a new feature supported by Microsoft
Jet 4.0, which allow more complex constraints on and across tables.

The topology of your application should be designed around the real-time load and estimated size of your database. For
example, you should have more than one hub database if many replicas are synchronizing at the same time and many
data changes are being exchanged during the synchronization. It is a good idea to prototype your application with
real-time data and load levels.

Replica Retention Period

The replica set retention period setting controls the number of days nonsynchronized system data is retained in system
tables. The retention period is established when the database is initially made replicable. If you replicate the database by
using Replication Manager, JRO, or DAO, the default retention period is 60 days. If you replicate the database by using
Microsoft Access or Briefcase replication, the default retention period is 1,000 days. The purging of old information
happens during a database compact and also periodically if a Synchronizer is managing the replica. The retention period
can be changed in the Design Master by using Replication Manager or the RetentionPeriod property in JRO. A replica set
should have a large retention period if replicas do not synchronize frequently. However, if replicas synchronize frequently
and you want to keep replica size smaller, specify a shorter retention period.

For More Information

Here is a list of publications you can refer to if you want more information about database replication, the Microsoft Jet
database engine, or using replication in Microsoft products.

Microsoft Jet Database Engine Programmer's Guide, Third Edition (Microsoft Press®, 1999). A detailed analysis of the
Microsoft Jet database engine, including extensive information about Microsoft Jet replication.
"Implementing Database Replication with JRO"

Glossary

ActiveX Data Objects (ADO)

The programming language-independent object-based data access language designed to be a universal data access
approach.

Bidirectional exchange

An exchange between two replicas, in which both replicas send and receive updates.
Cascade update/cascade delete

Referential integrity options that specify that changes or deletions to the primary key in one table will be propagated
to any other tables that reference that primary key value.

Column-level tracking

The tracking of data updates at the column (field) level, so that during synchronization updates to different columns

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

15 of 16 9/6/2006 7:06 PM

in the same row (record) can be merged.
Column lineage

A record of each nickname/generation pair for each column. Used when changes to a table are tracked at the column
level in order to optimize exchanges between replicas and resolve conflicts.

Conflict

In some situations, an update received from one replica causes a conflict in the receiving replica if both replicas
simultaneously update the same column or row in a table, or if new data violates a unique key rule, or a table-level
validation rule. One replica "wins" the conflict and its value is propagated to the rest of the replica set. The "losing
row" is logged in a conflict table, which is replicated to all replicas, and every replica is offered the chance to resubmit
its update.

Data Access Objects (DAO)

The programming language-independent object-based data access language used to manipulate Microsoft Jet data.
Database engine

A program, or part of a program, that serves as the link between a database-management system (DBMS) or
application and the data. Specifically, the part of a DBMS program that reads and writes data records.

Design Master

The single member of a replica set in which design (schema) changes may be made for propagation around the whole
replica set.

Exchange

The process of sending design and data updates between replicas.
Foreign key

A reference to the primary key in another table.
Generation

A counter, specific to each replica, that is incremented each time an exchange occurs with any other replica.
Global object

An object that is replicated around the replica set. Global objects can be created only in the Design Master.
GUID

Globally unique identifier. A primary key in a database that is always guaranteed to be unique. Also known as a UUID
(universal unique identifier).

Jet and Replication Objects (JRO)

A component of ADO that exposes functions exclusively for the Microsoft Jet database engine. These functions support
creating and managing replica sets.

Lineage

A record of each nickname/generation pair. Used to optimize exchanges between replicas and resolve conflicts.
Local object

An object that is not replicated around the replica set. A local table and/or query can be created in any replica. Local
Microsoft Access objects can be created only if the ReplicateProject database property is set to False prior to
making the database replicable.

Method

An action that can be applied to an object. For example, to move to the first record of a recordset, you apply the
MoveFirst method to the Recordset object.

Multimaster

The ability to modify any data at any replica.
Nickname

A shortened name for of the replica ID GUID, used in the lineage.
OLE

A standard method of linking and embedding objects created by one program to another program. Also, a type of
field (the OLE Object field) in Microsoft Jet used to store complex objects created by other programs.

Objects

A package of things created and manipulated by programs. In Microsoft Jet, tables, users, and query definitions are
all examples of objects.

Open database connectivity (ODBC)

A connectivity standard to read and write records from other databases, usually server databases.
Primary key

A field (or multiple fields) in a table that ensures that a record can be uniquely identified.
Property

An attribute of an object that can be retrieved and (sometimes) set. For example, the Index property of a table can
be set to the name of one or more fields in the table.

Pull exchange

An exchange between two replicas where one replica only receives, or pulls, update from the other replica.
Push exchange

An exchange between two replicas where one replica only sends, or pushes, its update to the other replica.
Read-only replica

A type of replica that is not permitted to update either data or the design. Read-only replicas can be created only
through Replication Manager, JRO, or DAO.

Referential integrity

A relational database rule that requires that all foreign-key values reference valid primary-key values.
Replica

A special copy of a database that is created in such a way as to allow changes made in the replica to be exchanged at

Database Replication in Microsoft Jet 4.0 (Microsoft Access 2000 Technical Articles)

16 of 16 9/6/2006 7:06 PM

a later time with other replicas in the replica set, eventually bringing all the replicas in the replica set into a consistent
state.

Replication

The process of creating special copies of a database, where the copies have a special relationship to each other.
Replica ID

A GUID that uniquely identifies a replica. The replica ID value is stored in the ReplicaId property.
Replica set

Replicas that share a common heritage and are able to synchronize their data and schema. Replicas can synchronize
only with other replicas in the same set.

Retention period

The amount of time, measured in days, that a replica set retains details of deleted records, design changes, and other
system-specific information. This value can be modified only within the Design Master, since it is considered a design
change, by using Microsoft Replication Manager or the Retention property value in JRO.

Row-level tracking

The tracking of data updates at the row (record) level; therefore, during synchronization, updates to different
columns in the same row will cause a conflict.

Synchronization

The process of bringing two replicas into a consistent state.
Transaction

A sequence of actions that must occur as a single unit.
Transaction processing

A mode of database processing that supports the creation, and saving (CommitTrans) or undoing (Rollback) of
transactions.

Two-phase commit protocol

A system used in some distributed database systems whereby each database either agrees to or rejects a proposed
change, and only if every database in the system agrees is the change actually made.

Validation rule

An expression that can be linked to a change of data so that it is always evaluated when a certain type of data
modification is made.

© 1999 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as

of the date of publication. Because Microsoft must respond to changing market conditions, this paper should not be

interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information

presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS

DOCUMENT.

Microsoft, ActiveX, Microsoft Press, Visual Basic, Windows, and Windows NT are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries.

Part No. 098-54938

Manage Your Profile | Legal | Contact Us | MSDN Flash Newsletter

© 2006 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

Print E-Mail

